SignalML: metaformat for description of
biomedical time series

Piotr J. Durka *, Dobiestaw Ircha

Laboratory of Medical Physics, Institute of Experimental Physics, Warsaw
University, ul. Hoza 69, 00-681 Warszawa, Poland, hitp://brain.fuw.edu.pl.

Abstract

This paper introduces a complete and elegant solution to the problem of inherent
incompatibility of different formats used for digital storage of biomedical time series
(in particular EEG) and their annotations.

We define a simple XML-based language, in which information on the structure of
binary data files can be simply and efficiently coded. In most cases, the description
of an existing format takes relatively few lines of XML code. Once written, this
information can be used by any software, which, owing to this meta-description,
may read the original data files, thus eliminating the need for conversions and
duplication of data.

This proposition is hereby submitted to an open discussion within the commu-
nity involved in relevant research, clinical and commercial applications. Links to
the current version of the XML Schema defining the language and the mailing list
signalml-1@fuw.edu.pl dedicated to this topic are located at http://eeg.pl/SignalML/.
This site offers also the first implementation: an Open Source multiplatform soft-
ware for display/annotation of the biomedical time series, which, owing to the idea
presented in this paper, can be easily adopted to new data formats.

Key words: biomedical time series, compatibility, EEG, digital storage,
annotations, tags, European Data Format, PhysioNet

* Corresponding author: Piotr J. Durka, Laboratory of Medical Physics, Institute
of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warszawa, Poland.
tel. (48 22) 5532126, fax (48 22) 6226154

Email addresses: durka@fuw.edu.pl (Piotr J. Durka), rircha@fuw.edu.pl
(Dobiestaw Ircha).

URL: http://durka.info (Piotr J. Durka).

Preprint submitted to Elsevier Science 28 April 2003

1 Introduction

Incompatibility of formats used for digital storage of biomedical time series
(and related annotations) is one of the major problems of contemporary elec-
troencephalography (c.f. [1,2]). It almost limits the exchange of data and pro-
cessing algorithms to clinics and laboratories using equipment and software
from the same manufacturer, which is one of the causes of the lack of a coher-
ent progress in clinical encephalography in the last decades [3]. The situation
looks similar e.g. for the digital EMG (electromyographic) data; Jabre and
Salzsieder [4] write:

”Different electromyography (EMG) machines store their data in different
formats that vary from manufacturer to manufacturer and even between
different EMG machines from the same manufacturer. As advanced as these
machines are today, it is necessary in most cases to use faxes, scanners, or
a common interface such as Adobe’s file format to exchange data between
them.”

The European Data Format was proposed in 1991 as a ”simple format for ex-
change of digitized polygraphic recordings” [5]. Aimed primarily at polysomno-
grams consisting of signals stored with different sampling frequencies, it was
optimized for their efficient storage by introducing the extra notion of a
“record”, containing sequences of equal time length from different signals.
In 2002 its extension to the EDF+ was proposed in a way preserving com-
patibility with previous versions, extending possibilities of annotating signals
and storing interrupted recordings. Authors of this standard write: “studying
the specification and then programming an EDF import/export unit typically
takes a few days” (http://www.hsr.nl/edf/). However, not every neurosci-
entist is also a programmer, and up till now we still lack of a freely available
and user friendly software for browsing and annotating EDF files.

A different set of formats was implemented in the largest Web-based research
resource for complex physiological signals PhysioNet.org [6]. This site offers
Open Source programs for display, conversions, annotation and processing of
data in these formats.

One could continue enumerating existing solutions (a review is given by [1]);
the standard thinking about these problems leads to a longing for a “universal
standard”. Even supposing that all the interested parties (neurophysiologists,
clinicians, engineers and companies) would agree (!) on any particular solution
as a standard, it would work only for the newly created recordings and systems.
All the existing data would have to be converted to this new/chosen format.
But conversions between different data formats in certain cases may lead to
a loss of information or accuracy. And because the existing software systems

are designed to work only with the ”old” formats, original files would have to
be preserved and this conversion would actually mean duplicating the data.

The deeper meaning of the word duplicating is the most important—trivial,
but to date unexplored—observation. In many cases conversions mean just
changing the format of the header or footer, while the numbers (actual values
of the time series) remain the same: usually 16-bit integers, sometimes 32-bit
floating points. It would be irrational to invent new formats for this. So if
we would just know how to interpret the different headers®, i.e. read from
them at least the crucial signal’s parameters like the number of channels and
the sampling frequency, we could use the original datasets! All it takes is an
efficient and universal metaformat for description of their structures.

Transition from paper to digital recordings created also the issue of annota-
tions (tags). To make them as flexible as the pencil marks on paper EEG,
digital annotations need to be:

(1) Easy to place at an arbitrary point or epoch of any given channel(s), and

(2) Uniquely linked to the datafile to which they refer, and even more: also to
the way the signal was presented to the algorithm or expert who created
the annotations (montage).

1.1 The Solution

We propose a general solution in terms of a universal and simple XML-
based language (SignalML) for meta-description of existing formats. Using
this metainformation, we may adopt any software to work with the original
datasets, just as easily as e.g. programming a “classical” import unit for a new
format. This eliminates the need for conversions and multiplying the data.

Definition of SignalML includes a universal and flexible schema for defining
and creating arbitrary annotations (tags), which can be uniquely (secured by
checksums) related to any arbitrary point or epoch of any channel(s) of the
recording. These definitions can include e.g. the traditional hypnograms, arti-
fact tags, arbitrary textual annotations related to any instant of the recording
or exact markings of start, end and channel of transients.

1 Or footers, or auxiliary files containing the necessary information

2 SignalML

The XML Schema formally defining the language ishttp://eeg.pl/SignalML.xsd.
The web page http://eeg.pl/SignalML/ contains wider description, exam-
ples, compliant software and a link to the mailing list devoted to discussion

on this proposition. Below we briefly present its main features.

2.1 Files

“Everything is a file”, so let’s start explaining the idea by a clear designation
of the involved types of files:

(1) definition of the XML Schema, formally defining the syntax of the
language, is contained in the file http://eeg.pl/SignalML.xsd.
(2) metainformation files should be unique for each existing format (or
its version), so they should be possibly identified by a URL, e.g. for the
European Data Format it is http://eeg.pl/meta_EDF.xml (Table 1)
(3) annotation files are related uniquely to a given data file, and contain:
e complete information necessary for a proper interpretation of the data
in a given file. Reference to a proper metainformation file may be suf-
ficient, or, alternatively, explicit values of parameters (sampling, num-
ber_of_channels etc.) defined in section 2.2 can be included,

e filename and control sum identifying uniquely the data file to which the
annotations relate,

e montage (transform) applied to the signal when creating annotations,

e definitions of tags/annotations,

e tags/annotations based upon the above definitions.

As a special case, annotation files with a complete set of parameters describing
a “raw” (containing only data samples) datafile may constitute an autonomous
format—this particular case would partially correspond to the translation pro-
posed in [4]. Content of an example annotation file is given in Table 2.

2.2 Parameters and properties

We define a minimum set of parameters, common to all the digitally stored
(multichannel) physiological signals:

data_format with following attributes:
e frame_type defines how the data from different channels (different signals)
are mixed in the file. Current options include standard full multiplexing

(‘multiplex’), ‘edf frame’ (arbitrary) and ‘frames’ as in PhysioNet.org,
e sample_type—the format of samples within the file, e.g 16-bit integer, 32-
bit IEEE floating point etc.
e offset—the number of bytes to skip (header size) before reading data sam-
ples
number_of_channels denotes the number of signals stored in file
sampling frequency has an attribute units (e.g. 'Hz’) and can be scalar or
vector 2. In the former case a uniform sampling frequency is assumed for all
the channels (signals) in file
calibration_gain defines the number by which sample values must be mul-
tiplied to obtain values in wunits (e.g. ‘microVolts’, attribute of ‘calibra-
tion_gain’)
calibration_offset numerical value to be substracted from each sample value
before multiplying by calibration_gain. If not defined explicitly, assumed zero
channel names is a vector of the names for signals stored in the file—usually
names of electrodes from which signals were recorded.

These values constitute the minimum information, necessary to display the
file’s data. If frame_type is diffrent from multipler, the minimum information
contains some more parameters.

In some idealized case of an ‘example’ dataformat, all these parameters could
be read from the file’s header by simply supplying offset in bytes® and the
type of the variable to be read, e.g.

<number_of_channels type=’byte’ offset=’16"/>,

and the whole metainformation would contain just a few of such clearly read-
able lines. However,

(1) apart from these generally understood parameters, datafiles (in particular
headers/footers etc.) may contain various kinds of information and it’s
difficult to propose a general naming/ontology for all these cases,

(2) these parameters are sometimes coded in an indirect way, e.g. in the
EDF format sampling_frequency is derived from the duration of a data
record and the corresponding number of samples.

Therefore, we introduce a <property> tag, where the name, defined freely
within the metainformation file, is coded in the id attribute. E.g. a string
identifying the patient in an EDF file (Table 1) can be specified as

2 If the attribute index is absent in the defining tag, we assume scalar.

3 Some parameters can be stored in different files than the data. Unless explicity
identified by the location attribute, offset values relate to the datafile and are
counted from its beginning.

<property id=’patient_ident’ type=’ascii’ width=’80’ offset=’8’/>

These names (ids), contained within the {} parenthesis, can be used as vari-
ables in expressions evaluating parameters values. Such expressions, which
contain mentioned variables, numbers and signs of the four basic mathemati-
cal operations (+-*/), are given in the attribute eval:

<sampling_frequency evaltype=’float’
eval="{nr_of_samples}/{duration_of_data_record}’/>

Finally, some of the parameters will be vectors rather than scalars. This prop-
erty is coded by the property index—if this property is absent in the defini-
tion, we assume a scalar. {index} as a number can be used explicitly in the
expressions evaluating the vector’s values, as in the above example from Table
1 defining the location of the names of electrodes:

<channel_names type=’ascii’ width=’16’
index=’1..{number_of_channels}’ offset=’256+16*{index}’/>

If this vectorial notation and four basic operations are not enough to specify
decoding of some complicated format, low level routines (currently in Java)
can be contained within <code> tags.

Table 1 exemplifies of some of the above constructs. Other examples are avail-
able from http://eeg.pl/SignalML/.

3 Examples and implementation

3.1 Format definition

In this section we present an example of a format’s definition: a file
http://eeg.pl/meta_EDF.xml, containing the metainformation needed and
sufficient to decode data stored in the European Data Format (EDF). We hope
that this notation, together with the brief description contained in this paper,
will be self-explanatory enough to give a general idea of the proposed language.
Additionally, metainformation for the EDF format (Table 1) can be compared
to the definition of the EDF header available from http://www.hsr.nl/edf.
A more extensive definition of the Signal ML language (including the Schema)
and further examples are available from http://eeg.pl/SignalML.

To properly interpret data stored in the European Data Format (Table 1),
we have to read several parameters separately for each signal stored in the

file. It requires an extensive use of the index=’1..{number_of_channels}’
attributes, indicating that the given property or parameter is a vector rather
than a scalar.

3.2 Annotations

An imaginary file exemplifying some tag definitions and actual marks (annota-
tions) is presented in Table 2. Section <datafile_identification> contains
enough information to uniquely link the annotations to a given data file. Sec-
tion <signal_transform> records the possible transforms applied to the sig-
nal when the annotations were created, that is, how the signal was presented
to an expert or algorithm. It may contain sections <montage> and <filters>.
Section <tag_definitions> contains in this example definitions of diverse
groups of tags: sleep stages are marked in blocks of fixed length (pages) and
quantized starting points (at a page boundary). The definition of ”transients
in C3” allows for arbitrary starting points and durations of tags, but contains
restriction to the channel number 10. Finally, tags of type ’events’ allow
to mark any epoch in any channel(s). In routine applications like e.g. sleep
stages scoring or marking artifacts, standard content of this section can be
automatically copied into this file.

Section <tag_data> contains the actual marks, in this example limited to just
a few. We observe that each of these tags can be assigned an arbitrary length
textual <annotation>.

3.3 Implementation

Together with the defining Schema, we provide an Open Source multiplatform
viewer, capable of displaying multichannel time series based upon the above
discussed metainformation. As a minimum, it allows to effectively share the
datasets and annotations between otherwise incompatible laboratories. The
system is based upon the General Public License
(http://www.gnu.org/licenses/gpl.html), with an exception allowing for
a restricted linking of a proprietary code, like e.g. signal processing plugins
compliant with the program’s API.

4 Conclusion

Signal ML provides a simple and effective way of encoding the metainformation
needed for a proper interpretation of digital time series, stored in different for-

mats. Unlike the actual software (programs), created in thousands for conver-
sions, display or analysis of data in particular dataformats, Signal ML encoding
requires only one instance (metainformation SignalML file) for a given format
to make it readable by any compliant software. E.g. if a hardware producer
wants to make the data, stored by his signal acquisition systems, accesible by
a (future) wealth of software of other providers (including Open Source), he
does not need to supply low-level input/output/conversion routines for any
imaginable programming language and operating system. All it takes are up
to a few dozen lines of standard XML.

This approach greatly simplifies also the task of writing software capable of
accessing data in more than one format. Classically, programmers needed to
write separate low-level routines for each different format or format feature.
After a software project was closed, it was extremely difficult to add support
for another dataformat. With SignalML we can write just one routine for
reading any dataformat based upon its meta-description in Signal ML.

Finally, for any interested scientist or clinician, writing such a meta-description
for most of the formats is simpler than programming low level I/O routines,
and opens access to the wealth of compliant software. The availability of the
multiplatform browser/annotator, mentioned in section 3.3, should be seens as
the first step in creation of this “wealth”, since such an open and user-friendly
program was, at least in the field of EEG, needed and missing for years. But
above all we hope that this approach will be accepted by the community. This
would expectably lead to development and/or adaptation of wide variety of
compliant software. Adopting any existing software to use Signal ML is a task
comparable to writing just one more I/O routine, since standard XML parsers
are readily available for most of the programming languages.

The presented idea was exemplified on the electroencephalographic and polysomno-
graphic recordings, but it is not limited to these. Most of the formats for
biomedical time series can be efficiently described within the proposed Schema—
maybe after some enhancements resulting from the open discussion. This pa-
per, the definition of the Signal ML language and the accompanying software
implementation provide the critical mass needed to start a discussion and col-
laborative effort of interested parties, leading to the development of Signal ML
and compliant software. We hope it will lead to a universal, elegant and widely
accepted markup language, which in due time will be submitted as a standard

to the World Wide Web Consortium.

5 Acknowledgements

This work was partially supported by the grant of Committee for Scientific
Research (Poland) to the Institute of Experimental Physics, Warsaw Univer-
sity.

References

[1] A. Varri, B. Kemp, T. Penzel, A. Schlogl, Standards for biomedical signal
databases, IEEE Eng Med Biol Mag (2001) 33-37.

[2] J. Olivan, Formats in clinical neurophysiology: The point of view of a user,
http://neurotraces.com/views/formats.html (2003).

[3] P. Durka, K. Blinowska, A unified time-frequency parametrization of EEG, IEEE
Eng Med Biol Mag 20 (5) (2001) 47-53.

[4] J. F. Jabre, B. T. Salzsieder, Defining extensible markup language standards for
electromyography data transmission across the world-wide web, Muscle & Nerve
999 (2002) S72-S76.

[5] B. Kemp, A. Virri, A. Rosa, K. Nielsen, J. Gade, A simple format for exchange of
digitized polygraphic recordings, Electroencephalogr Clin Neurophysiol 82 (1992)
391-393.

[6] G. Moody, R. Mark, A. Goldberger, Physionet: A web-based resource for the
study of physiologic signals, IEEE Eng Med Biol Mag (2001) 70-75.

<?xml version="1.0"7>

<meta_format>

<header>

<format id=’EDF’/>

<text_info>EDF data format</text_info>
<url> http://www.hsr.nl/edf</url>
</header>

<data_format frame_type=’edf_frame’
offset=’{header_size}’
record_size=’{duration_of_data_record}’
sample_size=’{nr_of_samples}’
sample_type=’int16’
/>
<parameters>
<property id=’version’ type=’ascii’ width=’8’ offset=’0’/>
<property id=’patient_ident’ type=’ascii’ width=’80’ offset=’8’/>
<property id=’record_ident’ type=’ascii’ width=’80’ offset=’88’/>
<property id=’start_date’ type=’ascii’ width=’8’ offset=’168’/>
<property id=’start_time’ type=’ascii’ width=’8’ offset=’176’/>
<property id=’header_size’ type=’ascii’ width=’8’ offset=’184’ evaltype=’int32’/>
<property id=’reserved’ type=’ascii’ width=’44’ offset=’192’/>
<property id=’number_of_data_records’ type=’ascii’ width=’8’ offset=’236’ evaltype=’int32’/>
<property id=’duration_of_data_record’ type=’ascii’ width=’8’ offset=’244’ evaltype=’float’/>
<property id=’transducer_type’ type=’ascii’ width=’80’ index=’1..{number_of_channels}’
offset=’256+16*{number_of_channels}+80*({index}-1)’/>
<property id=’physical dimension’ type=’ascii’ width=’8’ index=’1..{number_of_channels}’
offset=’256+96*{number_of_channels}+8*({index}-1)’/>
<property id=’physical_minimum’ type=’ascii’ width=’8’ index=’1..{number_of_channels}’
offset=’256+104*{number_of_channels}+8*({index}-1)’/>
<property id=’physical_maximum’ type=’ascii’ width=’8’ index=’1..{number_of_channels}’
offset=’256+112x{number_of_channels}+8*({index}-1)’/>
<property id=’digital_minimum’ type=’ascii’ width=’8’ index=’1..{number_of_channels}’
offset=’256+120*x{number_of_channels}+8%({index}-1)’/>
<property id=’digital_maximum’ type=’ascii’ width=’8’ index=’1..{number_of_channels}’
offset=’256+128*{number_of_channels}+8%({index}-1)’/>
<property id=’prefiltering’ type=’ascii’ width=’80’ index=’1..{number_of_channels}’
offset=’256+136+{number_of_channels}+80* ({index}-1)’/>
<property id=’nr_of_samples’ type=’ascii’ width=’8’ index=’1..{number_of_channels}’
offset=’256+216*x{number_of_channels}+8*({index}-1)’/>
<property id=’reserved2’ type=’ascii’ width=’32’ index=’1..{number_of_channels}’
offset=’256+224*x{number_of_channels}+32*({index}-1)’/>

<sampling_frequency index=’1..{number_of_channels}’
evaltype=’float’ eval=’{nr_of_samples}[{index}-1]/{duration_of_data_record}’
units=’Hz’/>
<number_of_channels type=’ascii’ width=’4’ offset=’252’ evaltype=’int32’/>
<calibration_gain evaltype=’float’ index=’1..{number_of_channels}’
eval="1.0F/({physical_maximum} [{index}]-{physical_minimum} [{index}]1)’
units=’microVolts’/>
<calibration_offset evaltype=’float’ index=’1..{number_of_channels}’
eval=’{physical_minimum}[{index}]-{digital_minimum}[{index}]*{calibration_gain}[{index}]’/>
<channel_names type=’ascii’ width=’16’ index=’1..{number_of_channels}’
offset=’256+16%{index}’/>
</parameters>
</meta_format>

Table 1
Metainformation for the European Data Format. Original definition of the EDF
header is available from http://www.hsr.nl/edf.

10

<?xml version="1.0"7>
<annotations>

<datafile_identification>

<format id=’EDF’/>

<name>example_datafile.edf</name>

<signature method=’crc32’ offset=’111’ length=’512’ value=’07af0b0d’/>
</datafile_identification>

<signal_transform>
</signal_transform>

<tag_definitions>
<def_group name=’HYPNOGRAM’ fixed_length=’2560’ offset_quant=’2560’
channels=’all’ ref_channel_number=’1’>
<tag_item name=’4’ description=’stage IV’/>
<tag_item name=’3’ description=’stage III’/>
</def_group>

<!-- marking transients in C3 -->

<def_group name=’C3_transients’ channels=’10’>
<tag_item name=’S’ description=’sleep spindle’/>
<tag_item name=’W’ description=’slow wave’/>

</def_group>

<def_group name=’events’>
<tag_item name=’0’ description=’other event in arbitrary channel’/>
</def_group>

</tag_definitions>

<tag_data>
<text_info>
Hypnogram and transients by dr. X, artifacts detected automatically
by http://EEG.pl/artifacts/ with parameters: threshold1=50%, threshold2=50%,
</text_info>
<tags>
<tag name=’4’ quantized_offset=’136’/>

<tag name=’S’ position=’1927’ length=’86’>
<annotation>I’m not quite sure whether it’s really a sleep spindle...</annotation>
</tag>

<tag name=’0’ position=’3234’ length=’25600’ ref_channel number=’1’>
<channels number=’7,9’/>
<annotation>Electrodes not contacting</annotation>

</tag>

</tags>

</tag_data>

</annotations>

Table 2
Example annotations to an EDF file

11

